library(dplyr)
library(srvyr)
library(srvyrexploR)
05 - Sampling Designs in {srvyr}
Slides
Your Turn
Set-up
Load necessary packages
Load in data and preview it
glimpse(chis_2023)
Rows: 21,671
Columns: 98
$ PUF1Y_ID <chr> "23021436", "23009146", "23005039", "23025815", "23010158"…
$ AH1V2 <fct> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes…
$ AH22 <fct> No, No, No, Yes, No, No, No, No, No, Yes, No, No, No, No, …
$ SMKCUR30 <fct> No, No, No, No, No, No, No, No, No, No, No, No, No, No, No…
$ AB1 <fct> Very good, Excellent, Good, Fair, Good, Excellent, Fair, E…
$ DIABETES <fct> No, No, No, No, Yes, No, No, No, No, No, No, No, Yes, No, …
$ BMI_P <dbl> 35.55, 22.96, 25.61, 42.52, 24.71, 19.14, 34.19, 31.89, 24…
$ RBMI <fct> Obese 30.0+, Normal 18.5-24.99, Overweight 25.0-29.99, Obe…
$ AB17 <fct> No, No, Yes, No, No, No, No, No, No, No, No, No, No, No, N…
$ DSTRS12 <fct> No, No, No, No, No, No, No, No, No, No, No, No, No, No, No…
$ AB29V2 <fct> No, No, Borderline hypertension, Borderline hypertension, …
$ SPK_ENG <fct> Speak only English, Speak only English, Speak English very…
$ POVLL2_P1V2 <dbl> 1.91, 6.00, 6.00, 3.31, 6.00, 6.00, 3.64, 1.21, 6.00, 1.78…
$ POVLL <fct> 100-199% FPL, 300% FPL and above, 300% FPL and above, 300%…
$ SRAGE_P1 <ord> 35-39, 30-34, 40-44, 60-64, 60-64, 70-74, 60-64, 80-84, 55…
$ SRSEX <fct> Female, Male, Female, Male, Male, Female, Male, Female, Fe…
$ OMBSRR_P1 <fct> "White, NH", "White, NH", "White, NH", "Hispanic", "Asian,…
$ RAKEDW0 <dbl> 377.76342, 5440.82230, 1510.73568, 189.35127, 816.45231, 1…
$ RAKEDW1 <dbl> 379.67385, 5423.54632, 1524.34483, 189.04169, 823.97981, 1…
$ RAKEDW2 <dbl> 377.67206, 5501.09481, 1518.55832, 189.20316, 813.52862, 1…
$ RAKEDW3 <dbl> 391.87241, 5422.38467, 1518.87859, 189.67529, 812.89534, 1…
$ RAKEDW4 <dbl> 383.52718, 5498.89734, 1501.34474, 187.64245, 811.32652, 1…
$ RAKEDW5 <dbl> 379.36716, 5426.12142, 1497.12070, 189.18938, 797.03189, 1…
$ RAKEDW6 <dbl> 372.56373, 5456.04102, 1525.81079, 188.55471, 807.12411, 1…
$ RAKEDW7 <dbl> 373.88851, 5518.54856, 1507.19963, 191.93340, 814.08142, 1…
$ RAKEDW8 <dbl> 386.89715, 5481.25082, 1532.46184, 185.18966, 829.15080, 1…
$ RAKEDW9 <dbl> 380.30036, 5393.13753, 1482.86902, 192.35734, 799.39751, 1…
$ RAKEDW10 <dbl> 396.80874, 5520.21994, 1512.59631, 188.96238, 823.09128, 1…
$ RAKEDW11 <dbl> 381.20852, 5560.46991, 1513.11707, 191.01037, 809.26274, 1…
$ RAKEDW12 <dbl> 370.08881, 5471.17062, 1490.55583, 190.17599, 828.57677, 1…
$ RAKEDW13 <dbl> 381.63377, 5539.08920, 1503.27857, 190.02121, 825.39467, 1…
$ RAKEDW14 <dbl> 387.73313, 5531.07340, 1518.70073, 185.98445, 816.56755, 1…
$ RAKEDW15 <dbl> 373.96319, 5461.81096, 1488.12767, 186.04791, 1643.84520, …
$ RAKEDW16 <dbl> 375.63387, 5425.88871, 1539.72594, 185.85065, 821.55347, 1…
$ RAKEDW17 <dbl> 375.90868, 5413.12792, 1532.15331, 190.06499, 817.35716, 1…
$ RAKEDW18 <dbl> 374.06907, 5409.66538, 1533.86418, 188.83553, 812.23683, 1…
$ RAKEDW19 <dbl> 370.70155, 5335.39076, 3030.67675, 190.35148, 816.76742, 1…
$ RAKEDW20 <dbl> 376.16361, 5542.36138, 1520.98004, 190.40463, 795.17561, 1…
$ RAKEDW21 <dbl> 376.66374, 5438.99627, 1529.29484, 188.40847, 836.53256, 1…
$ RAKEDW22 <dbl> 372.88810, 5407.19403, 1512.71368, 194.52411, 815.79660, 1…
$ RAKEDW23 <dbl> 377.08123, 5511.05350, 1501.40871, 187.07666, 822.90284, 1…
$ RAKEDW24 <dbl> 378.14045, 5447.60615, 1532.24763, 191.06993, 819.86697, 1…
$ RAKEDW25 <dbl> 376.63905, 5469.76063, 1499.22198, 190.37025, 826.91579, 1…
$ RAKEDW26 <dbl> 381.21627, 5424.59692, 1503.23199, 184.82446, 821.61634, 1…
$ RAKEDW27 <dbl> 736.12313, 5392.15220, 1508.96013, 189.40821, 812.01521, 1…
$ RAKEDW28 <dbl> 374.87207, 5399.98490, 1502.29676, 189.41890, 825.64499, 1…
$ RAKEDW29 <dbl> 370.48273, 5609.82334, 1504.46387, 193.33981, 822.45949, 1…
$ RAKEDW30 <dbl> 374.08421, 5478.56452, 1529.79756, 190.29283, 823.20287, 1…
$ RAKEDW31 <dbl> 375.93944, 5531.46321, 1517.66913, 187.70034, 831.32689, 1…
$ RAKEDW32 <dbl> 376.77720, 5454.02908, 1523.81288, 190.89860, 818.75318, 1…
$ RAKEDW33 <dbl> 373.90451, 5359.04687, 1496.22835, 187.71859, 808.17450, 1…
$ RAKEDW34 <dbl> 384.70325, 5372.82318, 1513.76344, 0.00000, 804.31669, 108…
$ RAKEDW35 <dbl> 385.93101, 5540.75364, 1515.22343, 189.41755, 841.06640, 1…
$ RAKEDW36 <dbl> 380.05346, 5367.44428, 1540.28237, 189.23365, 807.56729, 1…
$ RAKEDW37 <dbl> 383.44112, 5499.94872, 1514.47617, 185.00184, 816.35734, 1…
$ RAKEDW38 <dbl> 380.96955, 5365.76141, 1533.75380, 190.40014, 803.55967, 1…
$ RAKEDW39 <dbl> 378.53806, 5408.72203, 1509.70452, 190.37006, 820.94697, 1…
$ RAKEDW40 <dbl> 373.32674, 5618.84749, 1512.48396, 185.96514, 835.63063, 1…
$ RAKEDW41 <dbl> 375.60203, 5442.86619, 1507.47738, 188.91416, 797.63435, 1…
$ RAKEDW42 <dbl> 388.49579, 5468.25392, 1514.51889, 192.55026, 831.84420, 1…
$ RAKEDW43 <dbl> 379.04804, 5657.00804, 1504.12435, 187.34036, 821.21227, 1…
$ RAKEDW44 <dbl> 372.79291, 5412.42624, 1510.57340, 189.99224, 811.94509, 1…
$ RAKEDW45 <dbl> 387.31702, 5380.19192, 1524.80976, 189.34965, 796.24619, 1…
$ RAKEDW46 <dbl> 378.68040, 5455.72685, 1499.24639, 190.23263, 804.89197, 0…
$ RAKEDW47 <dbl> 379.80074, 5479.65824, 1491.39890, 189.03908, 816.88308, 1…
$ RAKEDW48 <dbl> 377.62516, 5370.25650, 1513.32532, 190.51240, 817.18117, 1…
$ RAKEDW49 <dbl> 370.27108, 5374.99529, 1534.30372, 195.08625, 819.42334, 1…
$ RAKEDW50 <dbl> 381.09146, 5623.57965, 1529.57536, 191.14493, 799.42589, 1…
$ RAKEDW51 <dbl> 372.93695, 5609.68675, 1518.73015, 185.10356, 810.56250, 1…
$ RAKEDW52 <dbl> 376.83386, 5416.01179, 1502.63013, 190.52319, 825.65017, 1…
$ RAKEDW53 <dbl> 389.22721, 5464.54688, 1510.69820, 191.24272, 856.36362, 1…
$ RAKEDW54 <dbl> 375.42718, 5516.58306, 1487.37912, 190.05101, 801.45826, 1…
$ RAKEDW55 <dbl> 384.84576, 5492.52884, 1505.72717, 187.44860, 811.25627, 1…
$ RAKEDW56 <dbl> 383.56347, 5647.00544, 1511.08240, 191.69014, 831.28855, 1…
$ RAKEDW57 <dbl> 380.48633, 5606.80831, 1511.94020, 192.65707, 794.17496, 1…
$ RAKEDW58 <dbl> 373.62795, 5757.47977, 1512.46551, 187.94741, 815.14317, 1…
$ RAKEDW59 <dbl> 378.91924, 5477.69162, 1507.52377, 197.38367, 817.99470, 1…
$ RAKEDW60 <dbl> 379.50452, 5477.71051, 1544.63224, 183.65976, 816.89856, 1…
$ RAKEDW61 <dbl> 376.64977, 5452.65149, 1514.34498, 188.45472, 814.88040, 1…
$ RAKEDW62 <dbl> 383.56295, 5491.55744, 1501.05195, 190.40998, 800.40138, 1…
$ RAKEDW63 <dbl> 373.75339, 5419.57694, 1516.86197, 190.99482, 781.46844, 1…
$ RAKEDW64 <dbl> 377.09404, 5438.36416, 1476.57247, 190.49051, 821.19084, 1…
$ RAKEDW65 <dbl> 382.93142, 5410.64353, 1528.48797, 187.00515, 825.62659, 1…
$ RAKEDW66 <dbl> 371.80213, 5483.77954, 1508.08229, 194.32258, 824.90959, 1…
$ RAKEDW67 <dbl> 376.80663, 5494.01669, 1506.71439, 192.39086, 814.74078, 1…
$ RAKEDW68 <dbl> 376.07679, 5382.78726, 1502.21384, 186.68741, 802.94914, 1…
$ RAKEDW69 <dbl> 378.27932, 5393.35827, 1514.61013, 190.74435, 810.13806, 1…
$ RAKEDW70 <dbl> 369.99802, 5501.78894, 1521.28708, 186.60201, 830.13613, 1…
$ RAKEDW71 <dbl> 374.53516, 5499.46675, 1512.58341, 191.23757, 805.99356, 1…
$ RAKEDW72 <dbl> 387.86304, 5404.68519, 1492.87434, 190.87869, 815.55435, 1…
$ RAKEDW73 <dbl> 374.74585, 5491.12022, 1498.81821, 187.83433, 819.17877, 1…
$ RAKEDW74 <dbl> 379.83108, 5413.06749, 1508.31555, 189.78261, 815.79475, 1…
$ RAKEDW75 <dbl> 382.49719, 5487.47759, 1551.93120, 186.79749, 823.61018, 1…
$ RAKEDW76 <dbl> 380.05337, 5418.50610, 1520.87989, 184.52873, 814.85938, 1…
$ RAKEDW77 <dbl> 379.98450, 5434.79433, 1480.95731, 190.16368, 812.64372, 1…
$ RAKEDW78 <dbl> 382.62349, 5523.48197, 1491.87493, 186.64661, 814.11781, 1…
$ RAKEDW79 <dbl> 372.87396, 5462.95628, 1516.71710, 189.64531, 813.59217, 1…
$ RAKEDW80 <dbl> 382.94937, 5420.72648, 1523.64843, 185.78273, 811.93065, 1…
glimpse(nsduh_2023)
Rows: 56,705
Columns: 22
$ QUESTID2 <dbl> 10000053, 10000679, 10001208, 10001260, 10001588, 10004996…
$ ANALWT2_C <dbl> 3276.46987, 15630.08295, 4018.17239, 10711.70954, 8195.104…
$ VESTR_C <dbl> 40031, 40021, 40043, 40030, 40023, 40048, 40003, 40038, 40…
$ VEREP <dbl> 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1…
$ NICVAPMON <int> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ TOBMON <int> 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
$ ALCMON <int> 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0…
$ ILLMON <int> 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1…
$ ILTOBVAPALC <int> 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1…
$ BNGDRKMON <int> 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ IRPYUD5ALC <int> 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ UD5ILLANY <int> 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
$ UD5ILALANY <int> 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
$ YMDELT <fct> NA, NA, NA, No, NA, NA, NA, NA, NA, Yes, NA, NA, Yes, No, …
$ YMDEYR <fct> NA, NA, NA, No, NA, NA, NA, NA, NA, No, NA, NA, Yes, No, N…
$ MDEIMPY <fct> NA, NA, NA, No, NA, NA, NA, NA, NA, No, NA, NA, Yes, No, N…
$ AMIPY <int> 0, 1, 1, NA, 0, 0, 0, 0, 0, NA, 0, 0, NA, NA, 1, 0, 1, 0, …
$ SMIPY <int> 0, 0, 0, NA, 0, 0, 0, 0, 0, NA, 0, 0, NA, NA, 0, 0, 1, 0, …
$ AGE3 <fct> 50-64, 35-49, 35-49, 12-13, 50-64, 18-20, 30-34, 65+, 30-3…
$ NEWRACE2 <fct> "Other", "White, NH", "Native HI/PI, NH", "Other", "More t…
$ IRSEX <fct> Male, Male, Female, Male, Male, Male, Male, Male, Female, …
$ POVERTY3 <fct> 201%+ FPL, 201%+ FPL, 0-100% FPL, 0-100% FPL, 201%+ FPL, 2…
Exercises
In these exercises, you will be given a study and the data. How would you create the survey object with design variables or replicate weights, as applicable?
California Health Interview Survey (CHIS) - 2023
- CHIS Design
- CHIS Resources
- Create the survey object using the data.
# Start with chis_2023
National Survey on Drug Use and Health (NSDUH) - 2023
- NSDUH Methodology
- NSDUH Download Data Files
- Create the survey object using the data.
# Start with nsduh_2023
Advanced bonus exercise
- Find a public use file of your own
- Download the data
- Read in the data
- Create the survey object
Solutions
See the solutions
In these exercises, you will be given a study and the data. How would you create the survey object with design variables or replicate weights, as applicable?
California Health Interview Survey (CHIS) - 2023
- CHIS Design
- CHIS Resources
- Create the survey object using the data.
Show code
<-
chis_des %>%
chis_2023 as_survey_rep(weights = RAKEDW0, repweights = RAKEDW1:RAKEDW80, type = "other", scale = 1, rscales = 1, mse = TRUE)
# or
<-
chis_des2 %>%
chis_2023 as_survey_rep(weights = RAKEDW0, repweights = RAKEDW1:RAKEDW80, type = "JKn", scale = 1, rscales = 1, mse = TRUE)
chis_des
Call: Called via srvyr
with 80 replicates and MSE variances.
Sampling variables:
- repweights: `RAKEDW1 + RAKEDW2 + RAKEDW3 + RAKEDW4 + RAKEDW5 + RAKEDW6 +
RAKEDW7 + RAKEDW8 + RAKEDW9 + RAKEDW10 + RAKEDW11 + RAKEDW12 + RAKEDW13 +
RAKEDW14 + RAKEDW15 + RAKEDW16 + RAKEDW17 + RAKEDW18 + RAKEDW19 + RAKEDW20
+ RAKEDW21 + RAKEDW22 + RAKEDW23 + RAKEDW24 + RAKEDW25 + RAKEDW26 +
RAKEDW27 + RAKEDW28 + RAKEDW29 + RAKEDW30 + RAKEDW31 + RAKEDW32 + RAKEDW33
+ RAKEDW34 + RAKEDW35 + RAKEDW36 + RAKEDW37 + RAKEDW38 + RAKEDW39 +
RAKEDW40 + RAKEDW41 + RAKEDW42 + RAKEDW43 + RAKEDW44 + RAKEDW45 + RAKEDW46
+ RAKEDW47 + RAKEDW48 + RAKEDW49 + RAKEDW50 + RAKEDW51 + RAKEDW52 +
RAKEDW53 + RAKEDW54 + RAKEDW55 + RAKEDW56 + RAKEDW57 + RAKEDW58 + RAKEDW59
+ RAKEDW60 + RAKEDW61 + RAKEDW62 + RAKEDW63 + RAKEDW64 + RAKEDW65 +
RAKEDW66 + RAKEDW67 + RAKEDW68 + RAKEDW69 + RAKEDW70 + RAKEDW71 + RAKEDW72
+ RAKEDW73 + RAKEDW74 + RAKEDW75 + RAKEDW76 + RAKEDW77 + RAKEDW78 +
RAKEDW79 + RAKEDW80`
- weights: RAKEDW0
Data variables:
- PUF1Y_ID (chr), AH1V2 (fct), AH22 (fct), SMKCUR30 (fct), AB1 (fct),
DIABETES (fct), BMI_P (dbl), RBMI (fct), AB17 (fct), DSTRS12 (fct), AB29V2
(fct), SPK_ENG (fct), POVLL2_P1V2 (dbl), POVLL (fct), SRAGE_P1 (ord), SRSEX
(fct), OMBSRR_P1 (fct), RAKEDW0 (dbl), RAKEDW1 (dbl), RAKEDW2 (dbl),
RAKEDW3 (dbl), RAKEDW4 (dbl), RAKEDW5 (dbl), RAKEDW6 (dbl), RAKEDW7 (dbl),
RAKEDW8 (dbl), RAKEDW9 (dbl), RAKEDW10 (dbl), RAKEDW11 (dbl), RAKEDW12
(dbl), RAKEDW13 (dbl), RAKEDW14 (dbl), RAKEDW15 (dbl), RAKEDW16 (dbl),
RAKEDW17 (dbl), RAKEDW18 (dbl), RAKEDW19 (dbl), RAKEDW20 (dbl), RAKEDW21
(dbl), RAKEDW22 (dbl), RAKEDW23 (dbl), RAKEDW24 (dbl), RAKEDW25 (dbl),
RAKEDW26 (dbl), RAKEDW27 (dbl), RAKEDW28 (dbl), RAKEDW29 (dbl), RAKEDW30
(dbl), RAKEDW31 (dbl), RAKEDW32 (dbl), RAKEDW33 (dbl), RAKEDW34 (dbl),
RAKEDW35 (dbl), RAKEDW36 (dbl), RAKEDW37 (dbl), RAKEDW38 (dbl), RAKEDW39
(dbl), RAKEDW40 (dbl), RAKEDW41 (dbl), RAKEDW42 (dbl), RAKEDW43 (dbl),
RAKEDW44 (dbl), RAKEDW45 (dbl), RAKEDW46 (dbl), RAKEDW47 (dbl), RAKEDW48
(dbl), RAKEDW49 (dbl), RAKEDW50 (dbl), RAKEDW51 (dbl), RAKEDW52 (dbl),
RAKEDW53 (dbl), RAKEDW54 (dbl), RAKEDW55 (dbl), RAKEDW56 (dbl), RAKEDW57
(dbl), RAKEDW58 (dbl), RAKEDW59 (dbl), RAKEDW60 (dbl), RAKEDW61 (dbl),
RAKEDW62 (dbl), RAKEDW63 (dbl), RAKEDW64 (dbl), RAKEDW65 (dbl), RAKEDW66
(dbl), RAKEDW67 (dbl), RAKEDW68 (dbl), RAKEDW69 (dbl), RAKEDW70 (dbl),
RAKEDW71 (dbl), RAKEDW72 (dbl), RAKEDW73 (dbl), RAKEDW74 (dbl), RAKEDW75
(dbl), RAKEDW76 (dbl), RAKEDW77 (dbl), RAKEDW78 (dbl), RAKEDW79 (dbl),
RAKEDW80 (dbl)
National Survey on Drug Use and Health (NSDUH) - 2023
- NSDUH Methodology
- NSDUH Download Data Files
- Create the survey object using the data.
Show code
<-
nsduh_des %>%
nsduh_2023 as_survey_design(weights = ANALWT2_C, strata = VESTR_C, ids = VEREP, nest = TRUE)
nsduh_des
Stratified 1 - level Cluster Sampling design (with replacement)
With (100) clusters.
Called via srvyr
Sampling variables:
- ids: VEREP
- strata: VESTR_C
- weights: ANALWT2_C
Data variables:
- QUESTID2 (dbl), ANALWT2_C (dbl), VESTR_C (dbl), VEREP (dbl), NICVAPMON
(int), TOBMON (int), ALCMON (int), ILLMON (int), ILTOBVAPALC (int),
BNGDRKMON (int), IRPYUD5ALC (int), UD5ILLANY (int), UD5ILALANY (int),
YMDELT (fct), YMDEYR (fct), MDEIMPY (fct), AMIPY (int), SMIPY (int), AGE3
(fct), NEWRACE2 (fct), IRSEX (fct), POVERTY3 (fct)